Portal:Mathematics
The Mathematics Portal
Mathematics is the study of numbers, quantity, space, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Selected article | Selected picture | Did you know... | Topics in mathematics
Categories | WikiProjects | Things you can do | Index | Related portals
There are approximately 31,444 mathematics articles in Wikipedia.
Selected article
An example of a map projection: the area-preserving Mollweide projection of the earth. Image credit: NASA |
A map projection is any method used in cartography (mapmaking) to represent the dimensional surface of the earth or other bodies. The term "projection" here refers to any function defined on the earth's surface and with values on the plane, and not necessarily a geometric projection.
Flat maps could not exist without map projections, because a sphere cannot be laid flat over a plane without distortions. One can see this mathematically as a consequence of Gauss's Theorema Egregium. Flat maps can be more useful than globes in many situations: they are more compact and easier to store; they readily accommodate an enormous range of scales; they are viewed easily on computer displays; they can facilitate measuring properties of the terrain being mapped; they can show larger portions of the earth's surface at once; and they are cheaper to produce and transport. These useful traits of flat maps motivate the development of map projections.
View all selected articles | Read More... |
Selected picture
A Bézier curve is a parametric curve important in computer graphics and related fields. Widely publicized in 1962 by the French engineer Pierre Bézier, who used them to design automobile bodies, the curves were first developed in 1959 by Paul de Casteljau using de Casteljau's algorithm. In this animation, a quartic Bézier curve is constructed using control points P0 through P4. The green line segments join points moving at a constant rate from one control point to the next; the parameter t shows the progress over time. Meanwhile, the blue line segments join points moving in a similar manner along the green segments, and the magenta line segment points along the blue segments. Finally, the black point moves at a constant rate along the magenta line segment, tracing out the final curve in red. The curve is a fourth-degree function of its parameter. Quadratic and cubic Bézier curves are most common since higher-degree curves are more computationally costly to evaluate. When more complex shapes are needed, lower-order Bézier curves are patched together. For example, modern computer fonts use Bézier splines composed of quadratic or cubic Bézier curves to create scalable typefaces. The curves are also used in computer animation and video games to plot smooth paths of motion. Approximate Bézier curves can be generated in the "real world" using string art.
Did you know...
- ... that the Life without Death cellular automaton, a mathematical model of pattern formation, is a variant of Conway's Game of Life in which cells, once brought to life, never die?
- ... that one can list every positive rational number without repetition by breadth-first traversal of the Calkin–Wilf tree?
- ... that the Hadwiger conjecture implies that the external surface of any three-dimensional convex body can be illuminated by only eight light sources, but the best proven bound is that 16 lights are sufficient?
- ... that an equitable coloring of a graph, in which the numbers of vertices of each color are as nearly equal as possible, may require far more colors than a graph coloring without this constraint?
- ... that no matter how biased a coin one uses, flipping a coin to determine whether each edge is present or absent in a countably infinite graph will always produce the same graph, the Rado graph?
- ...that it is possible to stack identical dominoes off the edge of a table to create an arbitrarily large overhang?
- ...that in Floyd's algorithm for cycle detection, the tortoise and hare move at very different speeds, but always finish at the same spot?
WikiProjects
The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Things you can do
Categories
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
Topics in mathematics
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
|
|||
Algebra | Analysis | Geometry and topology | Applied mathematics |
Index of mathematics articles
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
Related portals
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Algebra | Analysis | Category theory |
Computer science |
Cryptography | Discrete mathematics |
Geometry |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Logic | Mathematics | Number theory |
Physics | Science | Set theory | Statistics | Topology |
- What are portals?
- List of portals
- Featured portals