Select Page

WASP-17

WASP-17 is an F-type main sequence star approximately 1,310 light-years away in the constellation Scorpius.[3][1][7]

WASP-17 is named Dìwö. The name was selected in the NameExoWorlds campaign by Costa Rica, during the 100th anniversary of the IAU. Dìwö in Bribri language means the sun.[8][9]

The star, although similar to the Sun in terms of overall contents of heavy elements, is depleted of carbon. The carbon to oxygen molar ratio of 0.18±0.04 for WASP-17 is well below the solar ratio of 0.55.[10]

Planetary system

As of 2009, an exoplanet has been confirmed to orbit the star. The planet, WASP-17b, is unusual in that it is believed to orbit in the opposite direction to the star's spin (a retrograde orbit), and is twice the size of Jupiter, but half its mass.[11][12] The planet is also named Ditsö̀. It is subject to intensive photo-evaporation, and may be completely destroyed within one billion years from now.[13]

The planet was discovered by the SuperWASP project, hence the name.

The WASP-17 planetary system[4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b / Ditsö̀ 0.512±0.037 MJ 0.05151±0.00035 3.7354845(19) <0.020 86.83+0.68
−0.53
°
1.991±0.081 RJ

References

  1. ^ a b c d e f Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ Maxted, P. F. L.; et al. (2011). "UBV(RI)C photometry of transiting planet hosting stars". Monthly Notices of the Royal Astronomical Society. 418 (2): 1039–1042. arXiv:1108.0349. Bibcode:2011MNRAS.418.1039M. doi:10.1111/j.1365-2966.2011.19554.x. S2CID 117056033.
  3. ^ a b Anderson, D. R.; et al. (2010). "WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit". The Astrophysical Journal. 709 (1): 159–167. arXiv:0908.1553. Bibcode:2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159. S2CID 53628741.
  4. ^ a b c d Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID 118923163.
  5. ^ a b c d Torres, Guillermo; et al. (2012). "Improved Spectroscopic Parameters for Transiting Planet Hosts". The Astrophysical Journal. 757 (2). 161. arXiv:1208.1268. Bibcode:2012ApJ...757..161T. doi:10.1088/0004-637X/757/2/161. S2CID 16580774.
  6. ^ SIMBAD. Centre de données astronomiques de Strasbourg http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=HD+20794. {{cite web}}: Missing or empty |title= (help)
  7. ^ "Newfound Planet Orbits Backward". Space.com. 12 August 2009.
  8. ^ "Approved names". NameExoworlds. Retrieved 2020-01-02.
  9. ^ "International Astronomical Union | IAU". www.iau.org. Retrieved 2020-01-02.
  10. ^ Polanski, Alex S.; Crossfield, Ian J. M.; Howard, Andrew W.; Isaacson, Howard; Rice, Malena (2022), "Chemical Abundances for 25 JWST Exoplanet Host Stars with KeckSpec", Research Notes of the American Astronomical Society, 6 (8): 155, arXiv:2207.13662, Bibcode:2022RNAAS...6..155P, doi:10.3847/2515-5172/ac8676
  11. ^ "New exoplanet orbits 'backwards'". August 12, 2009 – via news.bbc.co.uk.
  12. ^ "New-found Planet Orbits Backward".
  13. ^ D. Ehrenreich and J.-M. Désert, "Mass-loss rates for transiting exoplanets", 2011